
Multicore Processors:
Status Quo and Future Directions

Mohamed Zahran
Computer Science Department

New York University
New York, NY 10012

Email: mzahran@cs.nyu.edu

Abstract—Words like multicore, manycore, Moore’s law end-
ing, have been around for more than a decade. How do these
words describe the current status quo of computer architecture?
How do they give a glimpse of the future? In this paper, we
will present the status quo of the current multicore/manycore
processors, and the expected future directions in light of several
advances both in process technology and in system software.

I. INTRODUCTION

Computers are designed to solve problems. This makes
correctness the initial and main goal. This has been the case
from the dawn of computer systems when computers were
scarce and used only in niche applications and at very few
organizations. As more sophisticated problems arise, another
criteria emerges: speed ( or performance). With higher perfor-
mance we can solve bigger and more sophisticated problems,
or solve the same problems in shorter time. To achieve this
higher performance, computer architects need to make use of
the increasing number of transistors given to us by Moore’s
law [1]. Doing so was successful for a while till architects
faced a big physical constraints: power [2].

For big machines, such as data centers and supercomputers,
power consumption and dissipation are translated into huge
electricity bill and cooling cost. For portable devices, like
tablets, smartphones, laptops, etc, power consumption and
dissipation mean packaging cost and battery life. This brings
power-constraint as a primary goal as opposed to being just a
secondary concern. Power and performance continue to be the
two main goal, for a while, until another constraint arises.

As transistors are getting smaller and smaller and we reach
the sub-micron era, transistors become less reliable(i.e. can
be switched on/off adversely) and they leak (i.e. cannot be
totally switched off). This brings another factor to the front-line
of computer design: reliability. Reliability-aware architecture
research strives to answer the following question: how can we
build a reliable machine with unreliable components?

Performance, power, reliability, are related to a single
machine. What happens when we connect several machines?
Security becomes an issue. Security is not only a software
issue. Hardware Trojan horses are big threats. How about if
your machines gets stolen? Secure hardware with the least
performance impact is a very hard problem.

For the rest of this paper, we will discuss all the above
issues in more details, shedding some light on the different
research directions.

II. PERFORMANCE

In the early days of computers, performance depended
mainly on computations. We try to make machines that com-
pute fast. The big-oh notation, at the algorithmic level, has thus
a very precise prediction of the speed by which a machine can
execute a specific algorithm. However, technology gave rise to
a different trend. Processor’s speed increased at a much faster
rate than memory speed. Since processors need to be fed with
instructions and data from the memory (mostly DRAM till
now), memory access became the bottleneck of performance.
This is known in computer architecture community as the
memory-wall [3]. This sparked several research directions
in the past that continued till the present is expected to
continue at least for the near future. How to improve DRAM’s
performance [4], [5]? How to manage the cache memory [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16]?

The memory-wall becomes harder as we move from single-
core to multicore processors [17]. Our inability to sustain
frequency increase in processors forced the designers to adopt
a different strategy: instead of increasing the frequency, keep
the frequency intact (or even reduce it) but increase the number
of cores (aka CPUs) on-chip. A core is now defined as a CPU +
level 1 instruction cache and level 1 data cache. We have now
a more sophisticated memory hierarchy. The last-level cache
(LLC) is usually at level 3, with level 2 being shared or private.
How to manage this hierarchy of caches (SRAM) and memory
(DRAM) [18], [19], [20], [21], [22], [23], [24]? A question
looking for an answer is: as the number of cores increases,
how will the cache hierarchy look like? One possible answer
is to use tiling for large caches in a way similar to Tilera
processors [25]. In this design a tile (a tile is a CPU + private
level 1 caches + part of the shared cache + router) contains
part of the shared cache. So the LLC is really a distributed
shared cache. However, as the number of cores increases, so
does the number of tiles and the interconnection among tiles
becomes another bottleneck. This brings another factor that
affects performance: the interconnection.

If the memory is a major bottleneck of performance, the
interconnection among cores and caches is the other bottle-
neck. This makes NoC (network-on-chip) a very hot topic
of research [26], [27], [28], [29]. As the number of cores
increases, how will the interconnect evolve [30]? What type
of routing algorithm to use? How to deal with coherence
overhead [31]? We can confidently say that we are facing
a bandwidth-wall [32]. All the above questions are research
topics worth exploring.



With memory access and interconnect becoming the main
performance bottlenecks, we need to rethink a bit the big-
oh notation. Given a specific problem to solve, we may have
several candidate algorithms. The big-oh notation tells us, for
each algorithm, as the problem size increases how will the
number of computations increases. We usually pick the al-
gorithm whose number of computations increases the slowest.
That is no longer enough. Computations are no longer the most
expensive part. Memory access and communication (among
cores and between cores and memory hierarchy) are now more
expensive. So we better pick the algorithm that can potentially
lead to less memory access and less communication, even
if it leads to more computations. If the amount the amount
of computations goes beyond the capability of the current
processors (i.e. intractable problem) then it is time to move to a
another level of parallelism: multiprocessors (supercomputers).

Single-core processors (e.g. Intel Pentium 4) exploits par-
allelism among instructions [33] through techniques such as
superscalar capability citeomondi99. Then simultaneous mul-
tithreading capability (known as hyperthreading technology in
industrial lingo) was added to cores to exploit small number of
parallel threads [34]. Now, with multicore processor, another
level of parallelism is added: task-level parallelism. There is
a different type of parallelism that exists in some application
types: single-thread multiple data (STMD). In this type, few
instructions are executed on large amount of data. The best
architecture to exploit this type of parallelism is the graphics-
processing unit (GPU), sometimes called manycore processors.
A general purpose core outsource the part of the code that
exhibits STMD to GPUs [35]. From an architectural point of
view, we have two schemes: discrete GPU (i.e. a separate
GPU chip on-board) and embedded-GPU (the GPU is on-
chip together with traditional cores, like Intel Sandy-Bridge
architecture). Discrete GPUs are stronger than the embedded
ones due to lack of area on-chip. However, a lot of performance
is lost in CPU-GPU communication [36]. Embedded GPUs
do not suffer from this communication overhead, yet they
are not as powerful. What is the best memory hierarchy
when GPU and CPU share the LLC? GPU as general-purpose
processor is still in its infancy [37], so there are a lot of open
questions. Shall we have coherence or not in GPUs? Shall we
have speculative execution in GPU [38]? What to expose and
what not to expose to the programmer? How to manage the
complicated GPU memory hierarchy [39], [40], [41], [42]?

We have touched upon some research topics related to
performance. But performance is not very useful if it comes
with high power consumption/dissipation.

III. POWER

Power is divided into power consumed and power dissi-
pated. Although there is no agreed-upon definition, we can say
that power consumed is the one used to do useful work. Power
dissipated is a wasted one. Whether consumed or dissipated,
power can be divided into two types: dynamic and static.
Dynamic power is related to activities in the processor, this is
why it is related, among other things, to clock frequency. Static
power is related to several reasons, the major one is leakage.
Leakage power is related to the fact that as transistor get
smaller, they cannot be completely turned-off. The main reason
power is becoming a serious problem is that even though

Moore’s law is still working, but its enabling technology
(Dennard Scaling [43]) stopped working since around 2004.
This means that the transistor is getting smaller but the power it
consumes/dissipates no longer scales down with the transistor’s
dimensions.

The major source for leakage power is the cache memory.
This is why reducing leakage in caches is a worth pursing
research problem [44], [45], [46], [47].

As for dynamic power, almost all the techniques we men-
tioned in the performance section above can be made power-
aware, for example power-aware interconnection [48], [49].
The main technique is dynamic voltage and frequency scaling
(DVFS). The challenges related to DVFS are: Who makes
the decision (programmer, compiler, OS, the hardware)? What
triggers the decision? What are the configurations we have
for the frequency and voltage? How much to expose to the
programmer? Although the literature has tens of papers about
power-aware design [50], there are still room for improvement:
from the programming-level, compiler-level, operating system
level, architectural-level, circuits-level, and VLSI level. With
the number of transistors on-chip increasing, we can no longer
turn them on at the same time. Which part of the chip shall
we turn-off (called dark silicon) with minimal performance
impact [51]? With transistors getting smaller, power is not the
only problem designers face.

IV. RELIABILITY

As transistors get smaller, they also become less reliable.
Yet, we want to design reliable machines with these unreli-
able transistors. The straightforward solutions are replication:
in time and in space. Replication in-time means repeating
the computation. Replication in space means replicating the
hardware structure and check any discrepancy in results. For
storage elements (caches, memory, disks) error-detection and
correction codes are used. However, replication comes at cost:
in performance and/or in area. In multicore processors, we can
make use of idle processors for reliability check, with some
cost of power. Some important questions are: how often to
check for reliability?

It is important to note that there are two type of structures
inside the processor. The first type consists of structures
needed for correctness, for example, the execution unit. The
second type consists of structures needed for performance, for
example, the branch predictor. If structures of the second type
fail, the execution is still correct, yet at worse performance.
This means we need to check for reliability of the first type
to ensure correctness of execution.

Another interesting question: what to do when a faulty
structure is detected after deployment? The straightforward
solution is to turn-it off with performance loss, assuming we
have other structures that do the same job. A more challenging
solution is to use the faulty part to give some hints to the non-
faulty part [52].

V. SECURITY

As computing devices become widespread, interconnected,
and handle sensitive/personal information, the need for security
is becoming more crucial. When a platform performs a single



task, never changes from that task and never shares that task
over a network, securing such a platform is not challenging.
Conventional approaches like anti-virus and anti-spyware tools
and OS patches are not totally effective in preventing secu-
rity attacks. To design a secure computing system, security
has to be systematically incorporated into the various stages
during the design of such systems: including architecture and
hardware implementation [53], [54], [55], [56]. The main
challenge, from a hardware perspective, is how to detect both
hardware and software malicious activities and deal with them
with minimal performance overhead.

VI. THEN WHAT?

In this paper, we took a quick look at the different areas of
computer architecture status quo and possible future directions.
But this paper is by no means exhaustive and we cannot easily
predict future directions. At the short-term, we are likely to see
evolutionary advances, for example:

• increase in the number of on-chip cores

• larger cache sizes

• bigger GPUs

• reconfigurable interconnects

• non-volatile memory system (e.g. PCM, STT-RAM,
MRAM, ...)

• more on-chip heterogeneouity: GPUs + FPGAs +
cores of different capabilities

• Anything that is more of the same with some tweaks!

At the long term, we may see some revolutionary ideas.
These are the hardest to predict, but here are some examples:

• biologically inspired machines

• non-CMOS circuit (Moore’s law will eventually ends
in less than a decade.)

• quantum computing

• new programming-paradigm: Functional programming
and transactional memories may or may not be the
answer, we do not know yet!
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