
Multicore Processors:
Status Quo and Future Directions

Mohamed Zahran
Computer Science Department

New York University
New York, NY 10012

Email: mzahran@cs.nyu.edu

Abstract—Words like multicore, manycore, Moore’s law end-
ing, have been around for more than a decade. How do these
words describe the current status quo of computer architecture?
How do they give a glimpse of the future? In this paper, we
will present the status quo of the current multicore/manycore
processors, and the expected future directions in light of several
advances both in process technology and in system software.

I. INTRODUCTION

Computers are designed to solve problems. This makes
correctness the initial and main goal. This has been the case
from the dawn of computer systems when computers were
scarce and used only in niche applications and at very few
organizations. As more sophisticated problems arise, another
criteria emerges: speed (or performance). With higher perfor-
mance we can solve bigger and more sophisticated problems,
or solve the same problems in shorter time. To achieve this
higher performance, computer architects need to make use of
the increasing number of transistors given to us by Moore’s
law [1]. Doing so was successful for a while till architects
faced a big physical constraints: power [2].

For big machines, such as data centers and supercomputers,
power consumption and dissipation are translated into huge
electricity bill and cooling cost. For portable devices, like
tablets, smartphones, laptops, etc, power consumption and
dissipation mean packaging cost and battery life. This brings
power-constraint as a primary goal as opposed to being just a
secondary concern. Power and performance continue to be the
two main goal, for a while, until another constraint arises.

As transistors are getting smaller and smaller and we reach
the sub-micron era, transistors become less reliable(i.e. can
be switched on/off adversely) and they leak (i.e. cannot be
totally switched off). This brings another factor to the front-line
of computer design: reliability. Reliability-aware architecture
research strives to answer the following question: how can we
build a reliable machine with unreliable components?

Performance, power, reliability, are related to a single
machine. What happens when we connect several machines?
Security becomes an issue. Security is not only a software
issue. Hardware Trojan horses are big threats. How about if
your machines gets stolen? Secure hardware with the least
performance impact is a very hard problem.

For the rest of this paper, we will discuss all the above
issues in more details, shedding some light on the different
research directions.

II. PERFORMANCE

In the early days of computers, performance depended
mainly on computations. We try to make machines that com-
pute fast. The big-oh notation, at the algorithmic level, has thus
a very precise prediction of the speed by which a machine can
execute a specific algorithm. However, technology gave rise to
a different trend. Processor’s speed increased at a much faster
rate than memory speed. Since processors need to be fed with
instructions and data from the memory (mostly DRAM till
now), memory access became the bottleneck of performance.
This is known in computer architecture community as the
memory-wall [3]. This sparked several research directions
in the past that continued till the present is expected to
continue at least for the near future. How to improve DRAM’s
performance [4], [5]? How to manage the cache memory [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16]?

The memory-wall becomes harder as we move from single-
core to multicore processors [17]. Our inability to sustain
frequency increase in processors forced the designers to adopt
a different strategy: instead of increasing the frequency, keep
the frequency intact (or even reduce it) but increase the number
of cores (aka CPUs) on-chip. A core is now defined as a CPU +
level 1 instruction cache and level 1 data cache. We have now
a more sophisticated memory hierarchy. The last-level cache
(LLC) is usually at level 3, with level 2 being shared or private.
How to manage this hierarchy of caches (SRAM) and memory
(DRAM) [18], [19], [20], [21], [22], [23], [24]? A question
looking for an answer is: as the number of cores increases,
how will the cache hierarchy look like? One possible answer
is to use tiling for large caches in a way similar to Tilera
processors [25]. In this design a tile (a tile is a CPU + private
level 1 caches + part of the shared cache + router) contains
part of the shared cache. So the LLC is really a distributed
shared cache. However, as the number of cores increases, so
does the number of tiles and the interconnection among tiles
becomes another bottleneck. This brings another factor that
affects performance: the interconnection.

If the memory is a major bottleneck of performance, the
interconnection among cores and caches is the other bottle-
neck. This makes NoC (network-on-chip) a very hot topic
of research [26], [27], [28], [29]. As the number of cores
increases, how will the interconnect evolve [30]? What type
of routing algorithm to use? How to deal with coherence
overhead [31]? We can confidently say that we are facing
a bandwidth-wall [32]. All the above questions are research
topics worth exploring.

With memory access and interconnect becoming the main
performance bottlenecks, we need to rethink a bit the big-
oh notation. Given a specific problem to solve, we may have
several candidate algorithms. The big-oh notation tells us, for
each algorithm, as the problem size increases how will the
number of computations increases. We usually pick the al-
gorithm whose number of computations increases the slowest.
That is no longer enough. Computations are no longer the most
expensive part. Memory access and communication (among
cores and between cores and memory hierarchy) are now more
expensive. So we better pick the algorithm that can potentially
lead to less memory access and less communication, even
if it leads to more computations. If the amount the amount
of computations goes beyond the capability of the current
processors (i.e. intractable problem) then it is time to move to a
another level of parallelism: multiprocessors (supercomputers).

Single-core processors (e.g. Intel Pentium 4) exploits par-
allelism among instructions [33] through techniques such as
superscalar capability citeomondi99. Then simultaneous mul-
tithreading capability (known as hyperthreading technology in
industrial lingo) was added to cores to exploit small number of
parallel threads [34]. Now, with multicore processor, another
level of parallelism is added: task-level parallelism. There is
a different type of parallelism that exists in some application
types: single-thread multiple data (STMD). In this type, few
instructions are executed on large amount of data. The best
architecture to exploit this type of parallelism is the graphics-
processing unit (GPU), sometimes called manycore processors.
A general purpose core outsource the part of the code that
exhibits STMD to GPUs [35]. From an architectural point of
view, we have two schemes: discrete GPU (i.e. a separate
GPU chip on-board) and embedded-GPU (the GPU is on-
chip together with traditional cores, like Intel Sandy-Bridge
architecture). Discrete GPUs are stronger than the embedded
ones due to lack of area on-chip. However, a lot of performance
is lost in CPU-GPU communication [36]. Embedded GPUs
do not suffer from this communication overhead, yet they
are not as powerful. What is the best memory hierarchy
when GPU and CPU share the LLC? GPU as general-purpose
processor is still in its infancy [37], so there are a lot of open
questions. Shall we have coherence or not in GPUs? Shall we
have speculative execution in GPU [38]? What to expose and
what not to expose to the programmer? How to manage the
complicated GPU memory hierarchy [39], [40], [41], [42]?

We have touched upon some research topics related to
performance. But performance is not very useful if it comes
with high power consumption/dissipation.

III. POWER

Power is divided into power consumed and power dissi-
pated. Although there is no agreed-upon definition, we can say
that power consumed is the one used to do useful work. Power
dissipated is a wasted one. Whether consumed or dissipated,
power can be divided into two types: dynamic and static.
Dynamic power is related to activities in the processor, this is
why it is related, among other things, to clock frequency. Static
power is related to several reasons, the major one is leakage.
Leakage power is related to the fact that as transistor get
smaller, they cannot be completely turned-off. The main reason
power is becoming a serious problem is that even though

Moore’s law is still working, but its enabling technology
(Dennard Scaling [43]) stopped working since around 2004.
This means that the transistor is getting smaller but the power it
consumes/dissipates no longer scales down with the transistor’s
dimensions.

The major source for leakage power is the cache memory.
This is why reducing leakage in caches is a worth pursing
research problem [44], [45], [46], [47].

As for dynamic power, almost all the techniques we men-
tioned in the performance section above can be made power-
aware, for example power-aware interconnection [48], [49].
The main technique is dynamic voltage and frequency scaling
(DVFS). The challenges related to DVFS are: Who makes
the decision (programmer, compiler, OS, the hardware)? What
triggers the decision? What are the configurations we have
for the frequency and voltage? How much to expose to the
programmer? Although the literature has tens of papers about
power-aware design [50], there are still room for improvement:
from the programming-level, compiler-level, operating system
level, architectural-level, circuits-level, and VLSI level. With
the number of transistors on-chip increasing, we can no longer
turn them on at the same time. Which part of the chip shall
we turn-off (called dark silicon) with minimal performance
impact [51]? With transistors getting smaller, power is not the
only problem designers face.

IV. RELIABILITY

As transistors get smaller, they also become less reliable.
Yet, we want to design reliable machines with these unreli-
able transistors. The straightforward solutions are replication:
in time and in space. Replication in-time means repeating
the computation. Replication in space means replicating the
hardware structure and check any discrepancy in results. For
storage elements (caches, memory, disks) error-detection and
correction codes are used. However, replication comes at cost:
in performance and/or in area. In multicore processors, we can
make use of idle processors for reliability check, with some
cost of power. Some important questions are: how often to
check for reliability?

It is important to note that there are two type of structures
inside the processor. The first type consists of structures
needed for correctness, for example, the execution unit. The
second type consists of structures needed for performance, for
example, the branch predictor. If structures of the second type
fail, the execution is still correct, yet at worse performance.
This means we need to check for reliability of the first type
to ensure correctness of execution.

Another interesting question: what to do when a faulty
structure is detected after deployment? The straightforward
solution is to turn-it off with performance loss, assuming we
have other structures that do the same job. A more challenging
solution is to use the faulty part to give some hints to the non-
faulty part [52].

V. SECURITY

As computing devices become widespread, interconnected,
and handle sensitive/personal information, the need for security
is becoming more crucial. When a platform performs a single

task, never changes from that task and never shares that task
over a network, securing such a platform is not challenging.
Conventional approaches like anti-virus and anti-spyware tools
and OS patches are not totally effective in preventing secu-
rity attacks. To design a secure computing system, security
has to be systematically incorporated into the various stages
during the design of such systems: including architecture and
hardware implementation [53], [54], [55], [56]. The main
challenge, from a hardware perspective, is how to detect both
hardware and software malicious activities and deal with them
with minimal performance overhead.

VI. THEN WHAT?

In this paper, we took a quick look at the different areas of
computer architecture status quo and possible future directions.
But this paper is by no means exhaustive and we cannot easily
predict future directions. At the short-term, we are likely to see
evolutionary advances, for example:

• increase in the number of on-chip cores

• larger cache sizes

• bigger GPUs

• reconfigurable interconnects

• non-volatile memory system (e.g. PCM, STT-RAM,
MRAM, ...)

• more on-chip heterogeneouity: GPUs + FPGAs +
cores of different capabilities

• Anything that is more of the same with some tweaks!

At the long term, we may see some revolutionary ideas.
These are the hardest to predict, but here are some examples:

• biologically inspired machines

• non-CMOS circuit (Moore’s law will eventually ends
in less than a decade.)

• quantum computing

• new programming-paradigm: Functional programming
and transactional memories may or may not be the
answer, we do not know yet!

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, pp. 114–117, April 1965.

[2] N. Leavitt, “Will power problems curtail processor progress?”
Computer, vol. 45, no. 5, pp. 15–17, May 2012. [Online]. Available:
http://dx.doi.org/10.1109/MC.2012.184

[3] S. A. McKee, “Reflections on the memory wall,” in Proceedings
of the 1st Conference on Computing Frontiers, ser. CF ’04.
New York, NY, USA: ACM, 2004, pp. 162–. [Online]. Available:
http://doi.acm.org/10.1145/977091.977115

[4] B. L. Jacob and T. N. Mudge, “A look at several memory management
units, tlb-refill mechanisms, and page table organizations,” in
Proceedings of the Eighth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS VIII. ACM, 1998, pp. 295–306. [Online]. Available:
http://doi.acm.org/10.1145/291069.291065

[5] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, “Simple but
effective heterogeneous main memory with on-chip memory controller
support,” in Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10, 2010, pp. 1–11.

[6] A. Agarwal and S. D. Pudar, “Column-associative cache: A technique
for reducing the miss rate of direct-mapped caches,” in Proc. 20th
International Symposium on Computer Architecture, 1993, pp. 179–190.

[7] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic, “Performance eval-
uation of cache replacement policies for the spec cpu2000 benchmark
suite,” in Proc. 42nd ACM Southeast Conference, 2004.

[8] B. Calder, D. Grunwald, and J. Emer, “Predictive sequential associative
cache,” in Proc. 2nd International Symposium on High Performance
Computer Architecture, 1996.

[9] J. N. Chame, “A compiler analysis of cache interference and its ap-
plications to compiler optimizations,” Ph.D. dissertation, Los Angeles,
CA, USA, 1997, aAI9835071.

[10] S. M. Günther and J. Weidendorfer, “Assessing cache false sharing
effects by dynamic binary instrumentation,” in Proceedings of the
Workshop on Binary Instrumentation and Applications, ser. WBIA ’09,
2009, pp. 26–33.

[11] S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: a
compiler framework for analyzing and tuning memory behavior,” ACM
Trans. Program. Lang. Syst., vol. 21, no. 4, Jul. 1999.

[12] M. Kharbutli and Y. Solihin, “Counter-based cache replacement algo-
rithms,” in Proc. International Conference on Computer Design, Oct
2005, pp. 61–68.

[13] T. Karkhanis and J. E. Smith, “A day in the life of a data cache miss,” in
Proc. 2nd Annual Workshop on Memory Performance Issues (WMPI),
Jun. 2002.

[14] N. Megiddo and D. Modha, “Outperforming lru with an adaptive
replacement cache,” 2004.

[15] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, and J. Emer,
“Adaptive insertion policies for managing shared caches,” in PACT
’08: Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, 2008, pp. 208–219.

[16] M. Qureshi, D. Lynch, O. Mutlu, and Y. Patt, “A case for mlp-
aware cache replacement,” in Proc. 33rd International Symposium on
Computer Architecture (ISCA), Jun. 2006.

[17] L. Hammond, B. Nayfeh, and K. Olukotun, “A single-chip multipro-
cessor,” IEEE Computer, 1997.

[18] B. M. Beckmann and D. A. Wood, “Managing wire delay in large chip-
multiprocessor caches,” in Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture, 2004.

[19] C.-Y. Chang, J.-P. Sheu, and H.-C. Chen, “Reducing cache conflicts
by multi-level cache partitioning and array elements mapping,” J.
Supercomput., vol. 22, no. 2, pp. 197–219, Jun. 2002.

[20] Y. Guo, Q. Zhuge, J. Hu, J. Yi, M. Qiu, and E. H.-M. Sha, “Data place-
ment and duplication for embedded multicore systems with scratch pad
memory,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 6, June 2013.

[21] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning
in a chip multiprocessor architecture,” in PACT ’04: Proceedings
of the 13th International Conference on Parallel Architectures and
Compilation Techniques, 2004, pp. 111–122.

[22] M. Zahran, K. Albayraktaroglu, and M. Franklin, “Non-inclusion
property in multi-level caches revisited,” the International Journal of
Computers and Their Applications Special Issue on Techniques and
Architectures for High Performance and Energy Efficient Computing
Systems, vol. 14, no. 2, jun 2007.

[23] M. Zahran and S. A. McKee, “Global management of cache hierar-
chies,” in Proceedings of the 7th ACM international conference on
Computing frontiers, ser. CF ’10, 2010, pp. 131–140.

[24] Y. Zheng, B. T. Davis, and M. Jordan, “Performance evaluation of
exclusive cache hierarchies,” in ISPASS ’04: Proceedings of the 2004
IEEE International Symposium on Performance Analysis of Systems and
Software, Mar. 2004, pp. 89–96.

[25] “http://www.tilera.com/.”

[26] R. Kumar, V. Zyuban, and D. Tullsen, “Interconnection in multi-core
architectures: Understanding mechanisms, overheads, and scaling,” in
Int’ Symposium on Computer Architecture, June 2005.

[27] J. Xue, A. Garg, B. Ciftcioglu, J. Hu, S. Wang, I. Savidis, M. Jain,
R. Berman, P. Liu, M. Huang, H. Wu, E. Friedman, G. Wicks,
and D. Moore, “An intra-chip free-space optical interconnect,” in
Proceedings of the 37th annual international symposium on Computer
architecture, ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp. 94–
105. [Online]. Available: http://doi.acm.org/10.1145/1815961.1815975

[28] Y. Katayama, A. Okazaki, and N. Ohba, “Software-defined massive-
core networking via freespace optical interconnect,” in The ACM
International Conference on Computing Frontiers (CF), 2013.

[29] M. J. Kobrinsky and et. al., “On-chip optical interconnects,” Intel
Technology Journal, vol. 8, no. 2, pp. 129–142, May 2004.

[30] A. Y. Weldezion, M. Grange, D. Pamunuwa, Z. Lu, A. Jantsch,
R. Weerasekera, and H. Tenhunen, “Scalability of network-on-chip
communication architecture for 3-d meshes,” in Proceedings of the
2009 3rd ACM/IEEE International Symposium on Networks-on-Chip,
ser. NOCS ’09, 2009, pp. 114–123.

[31] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Commun. ACM, vol. 55, no. 7, pp. 78–89,
Jul. 2012.

[32] H.-H. S. Lee, G. S. Tyson, and M. T. Farrens, “Eager writeback- a tech-
nique for improving bandwith utilization,” in 33rd annual IEEE/ACM
international symposium on Microarchitecture, December 2000.

[33] M. A. Postiff, D. A. Green, G. S. Tyson, and T. N. Mudge, “The limits
of instruction level parallelism in spec95 applications,” in Proc. 3rd
Workshop on Interaction Between Compilers and Computer Architecture
(Interact-3), 1998.

[34] D. M. Tullsen, S. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” in Proc. 22th Int’l Symposium
on Computer Architecture, 1995.

[35] M. Arora, S. Nath, S. Mazumdar, S. B. Baden, and D. M. Tullsen,
“Redefining the role of the cpu in the era of cpu-gpu integration,” Micro,
IEEE, vol. 32, no. 6, pp. 4–16, 2012.

[36] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and
D. I. August, “Automatic cpu-gpu communication management and
optimization,” in Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation, ser. PLDI ’11,
2011, pp. 142–151.

[37] E. Blem, M. Sinclair, and K. Sankaralingam, “Challenge benchmarks
that must be conquered to sustain the gpu revolution,” in 4th Workshop
on Emerging Applications for Manycore Architecture, 2011.

[38] J. Menon, M. de Kruijf, and K. Sankaralingam, “igpu: Exception
support and speculative execution on gpus,” in Proceedings of 39th In-
ternational Symposium on Computer Architecture (ISCA), ser. ISCA’12,
June 2012.

[39] N. B Lakshminarayana, J. Lee, H. Kim, and J. Shin, “Dram scheduling
policy for gpgpu architectures based on a potential function,” Computer
Architecture Letters, vol. PP, p. 1, 2011.

[40] S. Hong and H. Kim, “An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness,” in Proceedings
of the 36th annual international symposium on Computer architecture,
ser. ISCA ’09, 2009, pp. 152–163.

[41] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “Orchestrated scheduling and prefetching for gpgpus,”
in International Symposium on Computer Architecture (ISCA), 2013.

[42] K. S. Lee, “Characterization and exploitation of gpu memory systems,”
Master’s thesis, Virginia Polytechnic Institute and State University,
2012.

[43] “Discussing dram and cmos scaling with inventor bob dennard,” IEEE
Des. Test, vol. 25, no. 2, pp. 188–191, Mar. 2008.

[44] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-vdd: A circuit technique to reduce leakage in deep-submicron
cache memories,” in Proc. International Symp. on Low Power Electron-
ics and Design, Jul. 2000, pp. 90–95.

[45] S. Roy and K. Chakraborty, “Microarchitecture aware gate sizing: A
framework for circuit-architecture co-optimization,” in Proceedings of
the Int’l Conference on Computer Design (ICCD), October 2010, the
paper argues that DVFS techniques are becoming less effective as Vt

decreases and concerns in reliability and leakage arise. They propose
to design some component with slower technology with as little impact
on performance as possible. Their main argument is that components
are designed for best power-performance at highest utilization. But this
high utlization is rarely reached, and reducing V and F dynamically
makes these component less perfect in terms of power-performance.

[46] A. Youssef, M. Anis, and M. I. Elmasry, “Dynamic standby prediction
for leakage tolerant microprocessor functional units,” in 39th annual
IEEE/ACM international symposium on Microarchitecture, December
2006, pp. 371–384.

[47] W. Zhang, M. Kandemir, M. Karakoy, and G. Chen, “Reducing data
cache leakage energy using a compiler-based approach,” ACM Trans.
Embed. Comput. Syst., vol. 4, no. 3, pp. 652–678, Aug. 2005.

[48] W. Kdouh, “On the power management of multi-core processors
with network on chip,” Ph.D. dissertation, Dallas, TX, USA, 2010,
aAI3409220.

[49] A. K. Kodi and A. Louri, “Power-aware bandwidth-reconfigurable
optical interconnects for high-performance computing (hpc) systems,”
in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, march 2007, pp. 1 –10.

[50] M. Sjlander, M. Martonosi, and S. Kaxiras, Power-Efficient Computer
Architectures: Recent Advances. Morgan and Claypool Publishers,
2014.

[51] M. Taylor, “A landscape of the new dark silicon design regime,”
IEEE Micro, vol. 33, no. 5, pp. 8–19, Sep. 2013. [Online]. Available:
http://dx.doi.org/10.1109/MM.2013.90

[52] A. Durytskyy, M. Zahran, and R. Karri, “Improving robustness of gpus
by making use of faulty parts,” in Proc. International Conference on
Computer Design (ICCD11), 2011.

[53] A. Waksman and S. Sethumadhavan, “Tamper evident microprocessors,”
may 2010, pp. 173 –188.

[54] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware
performance counters,” in 5th Workshop on Fault Diagnosis and Tol-
erance in Cryptography, 2008 (FDTC ’08), aug. 2008, pp. 59 –67, *
This paper proposes the usage of hardware performance counters for
microarchitectural side-channel attacks.

[55] G. Kornaros and D. Pnevmatikatos, “A survey and taxonomy of
on-chip monitoring of multicore systems-on-chip,” ACM Trans. Des.
Autom. Electron. Syst., vol. 18, no. 2, pp. 17:1–17:38, Apr. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2442087.2442088

[56] A. M. Fiskiran and R. B. Lee, “Runtime execution monitoring (rem) to
detect and prevent malicious code execution,” in ICCD ’04: Proceedings
of the IEEE International Conference on Computer Design, 2004, pp.
452–457.

