Optimal Bandwidth Selection for Kernel Regression
Using a Fast Grid Search and a GPU

Chris Rohlfs
Morgan Stanley and Columbia University
car2228 @columbia.edu

Abstract—This study presents a new algorithm and corresponding
statistical package for estimating optimal bandwidth for a non-
parametric kernel regression. Kernel regression is widely used
in Economics, Statistics, and other fields. The formula for the
optimal “bandwidth,” or smoothing parameter, is well-known.
In practice, however, the computational demands of estimating
the optimal bandwidth have historically been prohibitively high.
Consequently, researchers typically select bandwidths for kernel
regressions using ad hoc rules of thumb. This paper exploits the
Single Program Multiple Data (SPMD) parallelism inherent in
optimal bandwidth calculation to develop a method for computing
optimal bandwidth on a GPU. Using randomly generated datasets
of different sizes, this approach is shown to reduce the run time
by as much as a factor of seven.

Keywords—nonparametric, kernel, regression, optimal bandwidth,
cross-validation, GPU.

I. INTRODUCTION

Nonparametric regression is used extensively in the field
of econometrics to summarize relationships among variables
with simple graphs. The approach is popular in part because
it allows economists to relax restrictive assumptions about
functional forms —e.g., that the relationship between two
variables is linear or log linear. In place of these assumptions,
the researcher can simply assume that the relationship between
the two variables is smooth (i.e., continuously differentiable
up to a certain order). One key factor that is relevant when
performing nonparametric regression is to correctly choose
the “bandwidth,” or smoothing parameter. This smoothing
parameter is selected to strike a balance between reducing the
variance at each point (by increasing the number of nearby
observations used to estimate the value) and reducing the bias
toward smoothness (by focusing specifically on observations
that are very close to the point at which we wish to estimate
our conditional mean).

One factor limiting the popularity of nonparametric estimation,
particularly for large datasets when it would be most valu-
able, is computational intensity. The computational intensity
is especially pronounced for one important procedure: the
selection of the optimal bandwidth (that minimizes the sum
of the variance and squared bias). Due to this computational
intensity, economists often use rule of thumb procedures in
place of the optimal bandwidth (for examples in kernel density

OChris Rohlfs has a Ph.D. in Economics from University of Chicago in 2006,
and M.Sc. in Computer Science from NYU in 2015. He is now Vice President
of Wealth Management Risk at Morgan Stanley in New York City, and he is
a part-time doctoral student in Deep Learning at Columbia University.

Mohamed Zahran
Computer Science Department
New York University
mzahran@cs.nyu.edu

estimation, see [25], [26]). One notable feature about the
computational requirements of optimal bandwidth selection is
that they are well-suited for Single Program Multiple Data
(SPMD) parallelism. The aim of this study is to exploit this
potential for parallelism by designing code to perform optimal
bandwidth selection using Graphics Processing Units (GPUs).

The standard approach for estimating the optimal bandwidth
involves performing numerical optimization over different
bandwidth values. Given that the objective function is not
necessarily concave, however, this approach can produce un-
stable and unreliable results. It is consequently preferable
to perform a “grid search,” where we construct an evenly-
spaced array of possible bandwidths (or an evenly-spaced
grid or matrix in multivariate contexts), and the optimum is
selected as the one from this array that produces the highest
value of the expression being optimized. Supposing that the
number of possible bandwidths is O(n), however, and given
that the objective function takes O(n?) steps to calculate,
performing a standard grid search has complexity O(n?). We
address this time cost with two strategies. First, we introduce
a new sorting-based method for constructing the leave-one-
out estimator for a grid of multiple bandwidths at once in
O(n log n) time, reducing the complexity of the overall
problem to O(n? log n). Second, we perform each of these
O(n log n) steps in parallel on a GPU. As the number of
cores in the machine approaches O(n), all of these O(n log n)
steps can be performed simultaneously, reducing the time cost
further to the cost of the leave-one-out construction on a single
core.

Section 2 of this paper presents a brief review of the liter-
ature on nonparametric econometrics and the application of
parallelism and GPUs to economic and econometric problems.
Section 3 provides a formal discussion of the operations to be
performed and their complexity. Section 4 provides details on
the implementation of this algorithm, including optimizations
to enhance performance. Section 5 presents the results of this
algorithm on randomly generated datasets of different sizes.
The optimized CUDA program currently does not work for
sample sizes greater than 20,000; however, at 20,000, it reduces
the run time by a factor of seven relative to the method
currently available in R for estimating optimal bandwidth.
Section 6 concludes.

II. LITERATURE REVIEW

Nonparametric estimation is used in Economics and Statis-
tics to provide visual summaries of population distribution

functions (pdfs) and statistical relationships without imposing
restrictive assumptions about functional form e.g., that a given
distribution is normal or uniform or that the relationship
between two variables x and y is linear or log linear. In place of
these functional form assumptions, nonparametric estimation
involves the assumption that a given pdf or functional relation-
ship is sufficiently smooth that it is continuously differentiable
up to a certain degree. In traditional parametric estimation,
statistical results consist of specific parameter estimates —
e.g., standard deviations, coefficients —and standard errors,
nonparametric results are typically presented graphically. Non-
parametric density estimation or kernel density estimation
(KDE) was first developed by Parzen [22] and Rosenblatt
[24] and Nonparametric regression or kernel regression by
Nadaraya [19] and Watson [27], all in the mid 20th century.
The techniques were popularized in the 1990s and later as
increased computational power and larger datasets made the
techniques practical. In addition to being used extensively in
Economics and Statistics, the methods are used in other areas
such as Chemistry [8], Physics [9], and Machine Learning [1]
and Computer Vision [30].

Both nonparametric density estimation and nonparametric re-
gression involve the calculation of locally weighted statistics
—either frequencies or conditional means —around a grid
of points of interest, where the weighting kernel has a spe-
cific functional form such as a Gaussian distribution around
each evaluation point in a grid. The degree of smoothing is
determined by the bandwidth, which is selected to strike a
balance between improving precision by using a larger number
of observations and limiting smoothness bias by focusing on
observations close to the evaluation points. Experts in the field
prefer the leave-one-out cross-validation method for optimal
bandwidth selection; however, practitioners typically use less
computationally intensive rules of thumb. Li and Racine [18]
and Pagan and Ullah [21] provide detailed explanations of the
methodology, including references and applications.

One important feature about KDE and kernel regression that is
relevant for the current study is that the techniques are highly
amenable to parallelism, and in particular the Single Program
Multiple Data (SPMD) parallelism that allows for computation
on Graphics Processing Units (GPUs). GPUs have been used to
parallelize a variety of computationally intensive procedures in
Chemistry [3], Mathematics [29], Molecular Biology [14], and
Physics [15], [16], including extensive applications to Markov
Chain Monte Carlo (MCMC) estimation [6], [7], [14], [15],
[28], a technique that is also used in Economics and Finance.

Despite the large amount of data and the many computa-
tionally intensive procedures used in applied economics and
econometrics, however, there is relatively little work in that
field that uses GPUs or high performance parallel computing.
Some researchers have used the GPU for econometric appli-
cations including regression with missing data [2], estimat-
ing heteroskedasticity- and autocorrelation-corrected variance-
covariance matrices [4], [5], and a Bayesian likelihood pro-
cedure applied to forecast terrorist activity in Colombia [28].
Other work has implemented multivariate regression with het-
eroskedasticity and autocorrelation-corrected standard errors
on large datasets using a pipelining procedure on a field-
programmable gate array (FPGA) [13], and one statistical
study has implemented bootstrapping with a GPU [6]. In the

broader fields of Economics and Finance, GPUs have been
used in estimating general equilibrium macroeconomic models
of the business cycle [11], options pricing [7], and projecting
losses for insurance companies [20].

Of these studies, there is one that applies nonparametric
regression on a GPU [10]. The authors apply these nonpara-
metric estimates in the context of a new Bayesian procedure
developed by the authors that they call indirect likelihood
inference. While the code in that study is primarily written to
implement the new statistical procedure, the authors provide
a useful first pass at nonparametric estimation on the GPU,
including some useful optimizations for efficient memory man-
agement. The authors use the k-nearest neighbor approach to
nonparametric estimation —which is more amenable to SIMD
parallelism —rather than the more common fixed-bandwidth
kernel approach.

This study builds upon these authors contributions by devel-
oping a package for optimal bandwidth selection for kernel
regression using a GPU. While the current implementation
only uses one kernel weighting function, it is straightforward
to add additional ones in the future. Additionally, the methods
developed here for least-squares cross-validation can be ap-
plied to many similar problems in nonparametric estimation,
including optimal bandwidth selection for kernel density es-
timation and the estimation of leave-one-out cross-validated
confidence intervals for kernel density estimates and kernel
regressions. To increase the accessibility of the contributions
here to the applied econometrics and statistics communities,
the dynamic.load package in R will be used to integrate
the compiled C and CUDA programs for optimal bandwidth
selection into an R package that will be made publicly avail-
able.

III. CONCEPTUAL FRAMEWORK

Using observations of Y; and X; on n different observations,
the researcher hopes to estimate the expected value of Y;
conditional on X; for an array of different values of X; using
a bivariate kernel regression, using a nonparametric kernel
weighting function K with smoothing parameter 4. As Li and
Racine [18] (pg. 69) discuss, the optimal bandwidth for a
nonparametric kernel regression is determined by selecting the
parameter A that minimizes the following equation:

CVie(h) =n~! Z(n —g-i(X0)PM(X3), (1)

where §_;(X;) is defined to be the “leave-one-out estimator”
of the mean of Y; conditional on X;, expressed as:

g-i(Xi) =Y VIK(Xi—X)/h)/ Y K((Xi—X1)/h) (2)

I#i I#i
and M(X;) is an indicator function for whether the denom-

inator in (2) is non-zero. One of the most common kernel
weighting functions is the Epanechnikov kernel [18] :

K(u) =0.75% (1 — u?) * I{|u| < 1} 3)

where I denotes the indicator function

In this and most other standard kernels, the bandwidth % enters
the equation in two ways: it scales the difference X; — X;, and
it affects the indicator function in the kernel. If X; — X; is
greater than & for a given observation /, then that observation
has no weight in the summation.

It is straightforward to see that doing so involves a tremendous
amount of computation. In order to arrive at a CV.(h)
value for a single bandwidth 4, it is necessary to perform a
summation over all n in Equation (1), where each element in
the summation is the ratio of two summations over all but
one observation, as illustrated in Equation (2). This O(n?)
procedure must be repeated for multiple bandwidth values.

Li and Racine [18] note that this minimization problem “can
be solved using any standard numerical optimization proce-
dure.” It should also be noted, however, that if we do not
assume a specific parametric distribution for the residuals
(Y; — §—:(X;)), then the objective function in Equation (1) is
not necessarily concave. Consequently, numerical optimization
techniques such as Newton-Raphson will often produce non-
global minima that depend upon the initial values used in the
calculations. Hence, a reliable procedure for estimating the
optimal bandwidth may require a more computationally inten-
sive approach such as a grid search, making our optimization
problem O(k*n?), where k is the number of points in the grid.
Supposing that k is proportional to the number of observations
n, we have an O(n?) problem.

This study introduces two new strategies for reducing the
complexity of this problem. First, we note that much of the
computation for the leave-one-out estimator is independent
of the value of & and need not be repeated across itera-
tions. Consider the case of a single leave-one-out estimator
(Y; — g—:(X;)), using the Epanechnikov kernel from Equation
(3). For a given value of A, it is necessary to sum each of
Y, Y+ (X; — X;)?, and (X; — X;)?, across all but one of
the observations that satisfy (X; — X;) < h. The second
and third summations must then be divided by h2. Next,
note that, for every hy > hi, every term that appears in the
summations for h; also appears in the summations for hs.
Hence, if the data are sorted in order of (X; — X;)?, then
once the summations are complete for the first bandwidth
value h;, we use the same summations for bandwidth Ay
and add the terms for the remaining observations that satisfy
(X; — X)) < hg. This procedure can be continued for all of
the bandwidth values being considered. Using this strategy,
it is possible to consider a grid of O(n) bandwidths and to
compute all O(n?) leave-one-out estimators in O(n log n)
time, where the summation requires O(n) operations and the
O(n log n) sorting algorithm dominates the computation.
With this optimization alone, the problem is simplified from
O(n®) to O(n? log n).

The second strategy that we introduce involves the use of
parallelism. Given the SPMD nature of the problem, we can
construct (Y; — g—;(X;)) for each of the different i values in
parallel using a many core machine like a GPU. Each core
can compute the summations described above for all of the
possible bandwidths in O(n log n) time. As the number of
cores in the machine approaches O(n), then the time cost of
computing the optimal bandwidth falls further from its original

cost of O(n?) to O(n log n).

IV. EXPERIMENTAL SETUP

We suppose that the researcher provides data on Y; and X;
and will use an Epanechnikov kernel.! The Nadaraya-Watson
[19], [27] local constant estimator is used rather than a local
linear regression. The Nadaraya-Watson estimator is the most
commonly used kernel regression estimator and is the default
in the common R package np [23]. An evenly spaced grid
of possible bandwidth values is considered. The user may
specify the minimum and maximum values in the grid as well
as the number of bandwidths to consider. As a default, the
maximum bandwidth in the grid is the domain of X; (i.e., the
difference between the maximum and minimum values), and
the minimum bandwidth is that domain divided by the number
of bandwidths being considered.

The program for estimating optimal bandwidth is written in C,
using the CUDA API. While the functions may accommodate
any pair of Y; and X; vectors, we use randomly generated
data to test the performance of the different algorithms. X;
is assumed to be uniformly distributed between zero and one,
and Y; is defined to equal 0.5 * X; + 10 % X2 + u;, where u;
is uniformly distributed between zero and 0.5.

A. Memory Allocation

The optimization procedure developed in this program requires
a considerable amount of the GPU’s global memory. First,
and less importantly from a resource standpoint, we copy the
arrays of size n of Y; and X; values and the array of size k
of possible bandwidths into memory, where k is the number
of bandwidths being considered. Another array of size k holds
the final cross-validation scores for each bandwidth, which is
used to determine which bandwidth is optimal.

In addition to these relatively minor demands on memory,
we generate several matrices in global memory that are used
for intermediate calculations. It may be possible to eliminate
the need for some of these intermediate matrices as the algo-
rithm is optimized, but appear in the program as it currently
stands. We allocate memory for two n by n matrices, one of
abs(X; — X;) values and another of Y; values. The purpose
of these matrices is to allow each thread to generate its own
observation-specific sorted versions of these arrays in order
to construct the summations used to construct the leave-one-
out estimator. these matrices are used to construct the n-by-k
sums over i of ¥ * (X; — X;)%/h?, and (X; — X;)?/h?, which
are key components in the construction of the observation-
specific leave-one-out estimators. These terms are combined
to produce another n-by-k matrix, this one of the squared
differences (Y; — §_;(X;))? that appear as elements of the
summation in Equation (1), each one appropriately adjusted
by the indicator function M (X;).

Allocating memory for these many matrices —especially the
n by n ones —not only involves a large time cost, it severely

IThe sorting strategy described in the previous section is not restricted to
the Epanechnikov kernel. The same approach can be used for the Uniform
and Triangular kernels. The Gaussian, which is probably the second most
common kernel weighting function, does not use an indicator function to
exclude observations and can consequently be constructed for k different
bandwidths without the need for a sort.

limits the size n of datasets for which the program can be
applied. Later versions of this study will examine ways to
reduce the use of these intermediate data objects and also
to make use of more recent compute capability GPUs that
allow dynamic allocation of global memory within the device
kernel; the current version was built to ensure compatibility
across different GPUs and drivers. Additionally, later versions
of this study will consider alternative ways to make more
efficient use of the GPU memory, swapping matrices out to the
host memory or to disk as necessary. To reduce the demands
for global memory and to ensure compatibility with relatively
early GPUs and NVCC drivers, only single-precision floating
point numbers are used in the computation.

Once these various matrices are allocated in the GPU memory,
the Y; and X, arrays are copied into the device’s global
memory. The array of bandwidth values is the same for all
observations and is consequently stored in the GPU’s constant
memory. Because the typical GPU’s cache working set for
constant memory is only 8 KB, no more than 2,048 bandwidth
values can be considered in the optimization. If a higher level
of precision is necessary, the user can run the optimization
code multiple times with progressively smaller ranges of
possible bandwidths.

B. Sequence of Operations

The main kernel constructs estimates of the leave-one-out
estimator separately for each observation. Each thread j fills
in n values of the abs(X; — X;) and Y; matrices. Next, it
sorts both of these matrices in order of abs(X; — X;). Each
thread performs its own complete sort. An iterative variant of
QuickSort is used, modified from [12] to sort floating point
numbers and to also sort an auxiliary variable. This iterative
QuickSort improves upon the recursive version by eliminating
the need for a tree of recursive subcalls with the associated
additions to the memory stack. Additionally, using the iterative
version helps to maintain compatibility with earlier GPUs, as
earlier versions of CUDA do not allow functions to contain
recursive sub-calls.

After these arrays are sorted, they are used to populate the
n-by-k summation matrices. We begin with the smallest band-
width. We begin with the first observations in the array, with
the smallest values of abs(X; — X). For each observation i
with abs(X; — X;) less than that smallest bandwidth, we add
(X; — X;)? to the corresponding in our first n-by-k matrix
corresponding to observation j and the smallest bandwidth, and
we add Y; times that value to corresponding element in our
second n-by-k matrix. Once we reach an observation whose
value of abs(X; — X;) exceeds the smallest bandwidth, we
move onto the next bandwidth value. We copy our sums for the
smallest bandwidth value over to the elements corresponding
to observation j and the second smallest bandwidth, and we
begin to add additional values to that sum, starting with the
next observation i, provided that its value of abs(X; — X;)
does not exceed the second smallest bandwidth. This proce-
dure continues until each thread j has computed each of its
bandwidth-specific sums.

Next, each thread j loops through all £ bandwidths. For each
one, both sums j-specific sums are divided by the square of
the bandwidths and are multiplied by 0.75. Following the

design of the leave-one-out estimator, the final sums exclude
the values corresponding to the j** observation. These sums
are then combined with the data on Y; to construct squared
residuals of the form (Y; — §_;(X;))?M(X;) separately for
each bandwidth. To facilitate efficient caching of memory and
to reduce bank conflicts, the matrix indices are switched at
this stage. When the summations are first constructed, they are
used in loops over the different bandwidths. For this reason,
they appear in groups of k, with a separate group for each
observation j. The squared residuals are to be summed across
J separately for each bandwidth, however. Hence, the array is
indexed as k separate groups of n.

Because this main kernel does not use shared memory or
coordination across threads, the block size and grid size were
selected to minimize the run-time. The total number of threads
in the grid was set equal to the number of observations in the
data. The fastest performance was found with threads per block
set to 512, the maximum possible on the GPU being used, so
that number of threads per block was chosen.

Once the squared residuals have been calculated, our remain-
ing tasks consist of reductions. We first add up the thread-
specific squared residuals separately by bandwidth, and we
then determine which bandwidth has the lowest sum of squared
residuals. These reductions are performed using a modified
version of the C and CUDA code that appears in [17]. That
code employs a variety of strategies, including extensive use
of shared memory and unrolling of loops in a radix sum to
minimize the time cost of the reduction. First, a summation
reduction is performed k times, once for each bandwidth, to
add up the squared residuals and consequently to arrive at
bandwidth-specific cross-validation scores C'Vj.(h) for differ-
ent values of h. Supposing that the number of threads per
block is 7, a single block is called, and T elements are stored
in shared memory. Each thread ¢ first adds together the values
of (Y; — g—;(X;))?M(X;) for the observations j for which j
equals t modulus 7. Then, the threads synchronize, and each
thread with ¢ < T'/2 adds to its sum the sum from the thread
t + T /2. The process repeats with 7'/4, T'/8, and so on until
thread zero contains the full sum.

Next, a variation of the reduction code is used that determines
the minimum among those k different scores. In order to
identify the bandwidth corresponding to the minimum cross-
validation score, it is necessary to store 2x7T" elements in shared
memory. The first T’ contain the cross-validation scores, and the
next 7 contain the bandwidths to which they correspond.> The
sequence of operations is similar. A single block is called, and
each thread ¢ computes the minimum value of C'Vj.(h) among
those bandwidths whose index values (rank when sorted) equal
t modulus 7. Each time one of these minima is updated with
a new value of C'V.(h), the shared memory at position ¢t + T
is updated with the value of the bandwidth corresponding
to that cross-validation score. After performing the reduction

2The same operation can be performed without copying the bandwidths into
shared memory, if we simply save the integer-value of the thread index with
the minimum bandwidth value —and then we can simply access that element
of the bandwidth array in the main memory after the procedure. In fact, it
should be possible to avoid saving the bandwidth values entirely. All we need,
in order to reconstruct the possible bandwidths, are the minimum value, the
maximum value, and the number of bandwidths to be considered. Given that
the program is so memory-intensive, reconstructing these bandwidth values
with each iteration should have little effect on the overall runtime.

minimum across the various threads in the block, element T
in the array of shared memory contains the optimal bandwidth
value.

C. Testing Design

The correctness of the program was ensured in multiple ways.
First, the sequential C code and the CUDA code were checked
against each other to ensure that they produced identical results
under many different sets of inputs. A variety of bugs were
identified through these comparisons. The debugging process
also involved examining many intermediate steps in the code
to ensure that, when considering sample sizes for which hand
calculation was feasible, the various sums and minima were
actually the intended sums and minima. Finally, while the R
programs used different randomly generated data, an additional
check on the correctness of the algorithms was to verify
that both R programs produced optimal bandwidths in similar
ranges to what was obtained from the C and CUDA code.

To evaluate the run time of our GPU-parallelized program for
optimal bandwidth selection, we consider four programs:

1) Racine & Hayfield. The optimal bandwidth selector
provided in the R package np [23]. Note that one of
the authors of this package is also an author of [18]).

2) Multicore R. An optimized cross-validation band-
width selector constructed by the author in the R
programming language. This program makes use of
the data.table and parallel libraries to speed
up some of the operations and to perform some of
the operations concurrently.

3) Sequential C. A sequential version of the C code
used here to estimate the optimal bandwidth.

4) CUDA on GPU. The parallelized version of the C
code using CUDA to estimate the optimal bandwidth
on the GPU.

Both 1) and 2) are programmed in R and identify the optimal
bandwidth using built-in numerical optimization techniques
in R. For this reason, both programs may produce estimates
that are not global minima and are sensitive to the initializing
values. Indeed, in [23] the authors suggest that it may be useful
to run the algorithm multiple times with different initial values
to ensure that one obtains a global solution. Program 1) is the
benchmark program and is publicly available. Programs 2), 3),
and 4) were created by the author of the current study. Program
3) is similar to 4), the main program being evaluated. It uses
the iterative QuickSort approach described here to perform a
grid search across possible bandwidth values.

All four programs are tested on a machine with 16 2.53 GHz
Intel Xeon CPU cores, 16 GB of main memory, and two Tesla
S10 GPUs, each with 240 streaming cores and 4 GB of device-
specific GPU memory.

Sample sizes of n = 100, 500, 1,000, 5,000, 10,000, and 20,000
are considered. Beyond that point, the GPU could not allocate
the memory required for the intermediate matrices. Future
versions of this paper will attempt to address this limitation
by reducing the reliance on global memory allocations. For
programs 3) and 4), numbers k of different bandwidths are
considered, including £ = 5, 10, 50, 100, 500, 1,000, and
2,000, with the number of bandwidths never exceeding the

number of observations used. As discussed earlier, the number
of bandwidths may not exceed 2,048 due to the 8 KB upper
bound on the cache working set for constant memory in most
GPUs. The range of possible bandwidths used is the default
for the programs, with the largest possible bandwidth equaling
one, because the domain of the uniformly distributed X; is
[0,1]. The smallest possible bandwidth is one divided by the
number of bandwidths being estimated.

For each program, sample size, and number of bandwidths
combination, the program is run five times around a similar
time as the other programs are run to ensure that the system
loads and other factors influencing run times are similar for
the different programs. Run times for the R programs are
computed inside the interacting R environment on Linux using
the system.time command. Hence, these run times do not
include the time cost of generating the data vectors. For the
C and CUDA programs, run times are estimated through the
Linux command time, applied to the compiled executable
files and consequently do include the time costs of generating
the random data. These O(n) operations account for a small
portion of the run-times and should have relatively little effect
on the results.

V. RESULTS

Figure 1 presents the main findings from this analysis. The
four curves shown on the graph illustrate the run times of the
four programs listed in the previous section as they vary with
the number of observations n, plotted along the horizontal axis
in logarithmic scale. The run time for each (program, n) pair
is plotted in seconds along the vertical axis. The graph shows
substantial speedups when moving from programs 1) to 2),
2) to 3), and 3) to 4), especially at the larger values of n.
When n = 20, 000, the highest value for which the optimal
bandwidth is computed here, the runtime for the program
1), the existing R package, is 232.5 seconds, or almost four
minutes. Program 2), the multicore R program introduced here,
appears to be less efficient in its computations but makes up for
that inefficiency with its use of 16 cores, giving it a run time of
124.7 seconds, or 44% lower than that of the benchmark. When
using the sorting-based approach with the grid search over 50
possible bandwidths, when n = 20, 000, the sequential code
completes in 80.9 seconds, or 65% faster than the benchmark,
and the code run on the GPU completes in 32.5 seconds,
slightly less than one seventh of the time of the benchmark
program. The speedup increases dramatically with the sample
size n, but program 4) cannot run at sample sizes greater than
20,000, because the memory requirements become prohibitive.
Future work will address this issue by eliminating the reliance
on storing n-by-n matrices in the GPU’s device memory.

The same run times are illustrated in Table I. As in the graph,
the C programs each compute cross-validation scores for 50
different bandwidths. As the table shows, the C programs
with the sorting-based approach, in addition to producing
guaranteed global minima, are consistently faster than the R
programs that use numerical optimization methods. At lower
sample sizes, the sequential programs are faster than their
parallelized counterparts. For both the R and the C programs,
the run times for the sequential and parallelized programs are
roughly equal around n = 1, 000, and for n values greater than
1,000, the parallelized code is considerably faster.

250

Radine & Hayfield
200

e Tlulticore B

Sequential C' with 50 bandwidths

Run time in seconds

===CUD A on GPU with 50 bandwidths

1 10 100 1,000
Sample Size in Logarithmic Scale

10,000

100,000

Fig. 1. Run Times by Program and Sample Size
TABLE 1. RUN TIMES BY PROGRAM AND SAMPLE SIZE
Sample Size Racine & Hayfield ~ Multicore R Sequential C ~ CUDA on GPU
50 0.04 1.16 0.00 0.09
100 0.05 1.43 0.01 0.09
500 0.38 1.46 0.07 0.15
1,000 1.12 1.49 0.27 0.24
2,000 16.71 13.59 4.89 1.83
10,000 68.69 32.08 19.24 7.10
20,000 23251 124.70 80.92 32.49

The next set of results, presented in Table II, illustrates how the
run times of Programs 3) and 4) vary with the number of band-
widths for which the cross-validation scores are calculated.
Results are shown for the sequential program in panel A and
for the parallelized CUDA program in panel B. In both cases,
rows correspond to numbers of bandwidths, and columns
correspond to sample sizes, so that the number of bandwidths
being considered increases as one moves down a column. For
the sequential program in panel A, at relatively small sample
sizes, the number of bandwidths has an appreciable effect on
performance. For instance, when n = 1,000, the run time
increases by roughly 70%, from 0.24 to 0.41, as the number of
bandwidths increases from 5 to 2,000. The effect is relatively
minor at large sample sizes; when n = 20, 000, as the number
of bandwidths increases from 5 to 2,000, the run time increases
by less than 5%. For the CUDA program, we do not observe
appreciable slowdowns associated with increasing the numbers
of bandwidths for any sample size.

TABLE II. RUN TIMES BY NUMBER OF BANDWIDTHS CALCULATED

Panel A: Sequential C Program
Sample Size

Bandwidths 50 100 500 1,000 5,000 10,000 20,000
5 000 000 0.06 0.24 4.83 19.09 80.24
10 0.02 0.01 0.06 0.27 4.93 19.43 80.43
50 0.04 0.0l 007 0.27 4.89 19.24 80.92
100 0.01 0.07 0.28 4.86 19.26 80.77
500 0.10 0.34 5.04 19.81 81.80
1,000 0.41 5.32 20.06 82.48
2,000 5.66 21.05 84.11

Panel B: CUDA Program Run on GPU

Sample Size

Bandwidths 50 100 500 1,000 5,000 10,000 20,000
5 009 009 0.5 0.24 1.80 6.94 31.83
10 009 0.09 0.15 0.24 1.82 7.00 32.08
50 009 0.09 0.15 0.24 1.83 7.10 32.49
100 0.09 0.15 0.25 1.84 7.11 32.56
500 0.16 0.26 1.86 7.13 32.55
1,000 0.26 1.92 7.32 33.13
2,000 2.05 7.68 3421

VI. CONCLUSION

Optimal bandwidth estimation is an important input into the
estimation of nonparametric regressions, and researchers often
omit this key step, due to the computational complexity of
the problem. This paper introduces two new innovations to
reduce the run time required to estimate optimal bandwidths.
First, a new sorting approach is introduced that makes a
grid search possible with little increase in the run time,
thus eliminating the need for relatively unreliable numerical
optimization methods. Second, a program is introduced to
compute an optimal bandwidth for an Epanechnikov kernel
in parallel using a GPU. Relative to the publicly available R
package, these optimizations together reduce the run time of
this algorithm by a factor of 7.

As the results show, much of the reduction in run time was
obtained by switching to C and by using the sorting-based grid
search approach rather than the numerical optimization. That
is, Programs 1), 2), and 3) each perform an O(nQ) algorithm,
but Program 3), which introduced those innovations, completed
in much less time than Program 1) or than the sequential
version of Program 2). Nevertheless, much of the code really
is amenable to SPMD parallelism, and using CUDA really did
speed up the estimation.

REFERENCES

[1] A. Amrouche, M. Debyeche, A. Taleb-Ahmed, J. Rouvaen, and
M. Yagoub. An efficient speech recognition in adverse conditions using
nonparametric regression. Engineering Applications of Artificial Intelli-
gence 23(1), Feb. 2010.

[2] G. Beliakov, M. Johnstone, and S. Nahavandi. Computation of high
breakdown regression estimators without sorting on graphics processing
units. Computing 94(5), May 2012.

[3] R. Betz and R. Walker. Implementing continuous integration software in
an established computational chemistry software package. In Proceedings
of the 5th International Workshop on Software Engineering for Compu-
tational Science and Engineering, May 2013.

[4] X. Cai and X. Lin. Forecasting high dimensional volatility using
conditional restricted Boltzmann machine GPU. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
& PhD Forum, May 2012.

[5] X. Cai, G. Lai, and X. Lin. Forecasting large scale conditional volatility
and covariance using neural network on GPU. J Supercomputing 63(2),
Feb. 2013.

[6] D. Cheng and Y. Liu. Parallel Gibbs sampling for hierarchical Dirichlet
processes via gamma processes equivalence. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Aug. 2014.

[7] G. Chow, A. Tse, Q. Jin, W. Luk, P. Leong, and D. Thomas. A
mixed precision Monte Carlo methodology for reconfigurable accelerator
systems. In Proceedings for the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, Feb. 2012.

[8] P. Constans and J. Hirst. Nonparametric regression applied to quantitative
structure-activity relationships. J Chem Inf Comput Sci 40(2), Mar. 2000.

[9] K. Cranmer. Kernel estimation in high-energy Physics. Comput Phys
Commun 136(3), Mar. 2001.

M. Creel and M. Zubair. High performance implementation of an
econometrics and financial application on GPUs. In 2012 SC Companion:
High Performance Computing, Networking, Storage and Analysis, Nov.
2012.

M. Dziubinski and S. Grassi. Heterogeneous computing in Economics:
A simplified approach. Computational Economics 43(4), Apr. 2014.

(10]

(11]
[12] D. Finley. Optimized quicksort —C implementation (non-recursive),
2010. Available at: http://alienryderflex.com/quicksort/

C. Guo and W. Luk. Pipelined HAC estimation engines for multivariate
time series. J Sign Process Syst 77(1-2), Oct. 2014.

[13]

[14] E. Hailat, K. Rushaidat, L. Schwiebert, K. Mick, and J. Potoff. GPU-
based Monte Carlo simulation for the Gibbs ensemble. In Proceedings
of the High Performance Computing Symposium, 2013.

[15] C. Hall, W. Ji, and E. Blaisten-Barojas. The Metropolis Monte Carlo
method with CUDA enabled graphics processing units. J Computational
Physics 258, Feb. 2014.

[16] A.Harju, T. Siro, E. Canova, S. Hakala, and T. Rantaliho. Computational
Physics on graphics processing units. In Applied Parallel and Scientific
Computing: 11th International Conference, PARA 2012, Jun. 2012.

[17] M. Harris. Optimizing parallel reduction in
CUDA. NVIDIA, Sep. 2012. Available at:
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

[18] Q.Liand]J. Racine, Nonparametric Econometrics: Theory and Practice,
Ist ed. Princeton, NJ: Princeton University Press, 2007.

[19] E. Nadaraya. On nonparametric estimates of density functions and
regression curves. Theory of Probability & Its Applications 10(1), 1965.

[20] B. Norkin. Systems simulation analysis and optimization of insurance
business. Cybernetics and Systems Analysis 50(2), Mar. 2014.

[21] A. Pagan and A. Ullah, Nonparametric Econometrics, 1st ed. Cam-
bridge, UK: Cambridge University Press, 1999.

[22] E. Parzen. On estimation of a probability density function and mode.
Annals of Mathematical Statistics 33(3), 1962.

[23] J. Racine and T. Hayfield. Package ‘np.” Nonparametric kernel smooth-
ing methods for mixed data types, Jul. 2014. Available at: http://cran.r-
project.org/web/packages/np/np.pdf

[24] M. Rosenblatt. Remarks on some nonparametric estimates of a density
function. Annals of Mathematical Statistics 27(3), Sep. 1956.

[25] S.J. Sheather and M.C. Jones. A reliable data-based bandwidth selection
nmethod for kernel density estimation. Journal of the Royal Statistical
Society, Series B (Methodological) 53(3), 1991.

[26] B.W. Silverman. Density estimation for statistics and data analysis.
New York: Chapman and Hall, 1991.

[27] G. Watson. Smooth regression analysis. Sankhya 26(15), Dec. 1964.

[28] G. White and M. Porter. GPU accelerated MCMC for modeling terrorist
activity. Computational Statistics and Data Analysis 71, Mar. 2014.

[29] R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski,
eds. Parallel Processing and Applied Mathematics: 9th International
Conference, Sep. 2011.

[30] S. Zhu, L. Zhang, and H. Jin. A locally linear regression model for
boundary preserving regularization in stereo matching. In Computer
Vision —ECCV 2012: 12th European Conference on Computer Vision,
Oct. 2012.

